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Abstract. Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is
shown to be a promising technique for implementing quantum computing. The theory underlying the
principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework
of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation
and coherence selection in Floquet space are given. It suggests that by this method, the largest number
of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for
quantum computing, this method enables one to adjust the dimension of the working state space, meaning
the number of qubits can be readily varied. The universality of quantum computing in Floquet space with
solid state NMR is discussed and a demonstrative experimental implementation of Grover’s search is given.

PACS. 03.67.-a Quantum information – 76.60.-k Nuclear magnetic resonance and relaxation

1 Introduction

As early as the late 1950’s, Landauer and Bennet
et al. [1–6], investigated the effects of physical laws on
computing, such as the reversibility of a computing oper-
ation and the minimal energy required to transmit a bit of
information. Feynman [7], on the other hand, was study-
ing the fundamental limitations of quantum mechanics on
the capacity of (classical) computers. The most impor-
tant question in these works was what would it happen if
computing logic is not presumably given but rather deter-
mined by physical laws, particularly, quantum mechanical
laws? With the rapid development of very large scale inte-
grated circuitry technology, above question seemed to be-
come important in the early 1980’s; that can be rephrased
as, what would it happen if the chip size were made so
small that one chip contains very few, even just one impu-
rity electron? That background of scientific development
initiated quantum computing research. However, quan-
tum computing was basically dormant in the decade of
the 1980’s. It has since gained increasing attention once
the power of a hypothetical quantum computer was re-
vealed, particularly, through the works of Deutsch [8–12]
Shor [13,15], Lloyd [16] etc. Deutsch [8,9,12] showed
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that genuine and massive parallelism can be achieved.
Lloyd [16] proposed a quantum computing prototype that
has subsequently been followed. Shor [13] demonstrated
the power of quantum computer in solving the famous
and all-important problem in number theory and pub-
lic key cryptography system, i.e. the prime factoring of
large integers. Shor et al. [14,15,17], Gottesman [18,19],
Steane [20–22], Schumacher [26]and Preskill [23] and oth-
ers invented a variety of quantum error correction schemes
that are crucial to the realization of long-time quantum
computing.

Since then, theoretical publications have appeared
with increasing frequency, encompassing almost every as-
pect of computing theory(for review, see, e.g., [27,28]).
Remarkable progress in experimental implementation and
model proposals also has been made in utilizing an exten-
sive repertoire of sophisticated experimental techniques
including atomic interferometry [29], quantum electro-
dynamic cavity [30–34], ion trap [35,36], polarized pho-
tons [37], nuclear spins embedded in an electron sys-
tem in the quantum Hall regime [38], quantum dots [39],
Josephson junction [40], electrons in liquid helium [41],
nuclear spins in doped silicon devices [42], single Cooper
pair [43], Rydberg atom [44] and liquid NMR [45–61].
Differing from other techniques, the NMR prototype
uses bulk samples hence an ensemble of nuclear spins
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rather than pure quantum mechanical systems. Among
the above experimental prototypes, NMR is certainly the
most promising, to date: all above methods except NMR
can only simulate a single quantum logic gate such as
controlled NOT gate, but NMR can do much more than
that, e.g., it can simulate a quantum network such as the
performing of simple arithmetic operations, and a quan-
tum computer that can execute simple quantum algo-
rithms [48–51,53,56,59]. The NMR method offers the first
realizable quantum computer operating with more than
two qubits, thus providing for the first time a quantum
computer with error correction capacity [60]. All these
demonstrations used liquid state NMR spectroscopy be-
cause of its natural high resolution. While the progress
has been remarkable, one severe difficulty with the NMR
quantum computer is the exponential loss of the signal
sensitivity with the increase of spin numbers (hence us-
able qubits) in the working molecule. It is clear that es-
tablishing an NMR quantum computer with a capacity of
over ten qubits is rather challenging [62], if not impossible
even though a host of sensitivity-enhancing techniques are
available [47].

In this paper, we present an alternative, probably
more advantageous, method for performing NMR quan-
tum computing, that is, quantum computing based on
solid state NMR involving rotating samples at an angle
of 54.74◦, the magic-angle to the applied magnetic field.
This so-called magic-angle spinning (MAS) [63,64] NMR
can be well formulated using Floquet theory [65–74]. From
the point of view of quantum computing, the Floquet de-
scription offers a method to augment the state space, al-
most infinitely. In practice, nevertheless, the size of the
space is restricted by the signal sensitivity. However, as
shown in our theoretical analysis elaborated below, this
size can be easily made much larger than that realizable
in liquid NMR studies. For quadrupolar nuclei, the side-
bands produced by the rotating polycrystalline samples
can be as many as thousands or even more [75,76], mean-
ing usable qubits can be easily achieved, even in excess
of 10 merely by using conventional NMR techniques, al-
though in this case, the manipulation of quantum states
and coherences is more complicated than for spin-1/2 sys-
tems. The other obvious advantage of solid state NMR
is that the number of spins in a sample is usually much
larger than in a liquid sample of the same size, mean-
ing a significant sensitivity gain. Our paper is arranged
as follows. In the Section 2, the theory underlying quan-
tum computing with solid state MAS NMR is described;
this is the foundation of the subsequent sections of paper
and future work. Particularly important are the definition
of the pseudo pure state in Floquet space and its con-
nection with quantum computing. While the theoretical
framework applies to nuclear spin-1/2 systems as well as
to quadrupolar nuclear spins, the remainder of the paper
will focus on spin-1/2 systems with chemical shift interac-
tions. Section 3 establishes the correspondence between a
pseudo pure state and its spectral representation. This
is essential to the read-out function in NMR quantum
computing because the directly detectable signals in NMR

arise from the single quantum coherences. The theoretical
derivation of the spectral signal is demonstrated in Ap-
pendix A. The preparation of pseudo pure state is crucial
to quantum computing and this is discussed in Section 4.
Three different methods are considered. Section 5 analyzes
the universality of MAS solid state NMR quantum com-
puting. In Section 6 is demonstrated the implementation
of an important quantum computing algorithm, namely,
Grover’s search, on a solid state NMR quantum computer.
The major points of this paper are summarized in the final
section.

2 Quantum computing in Floquet space

2.1 Quantum Floquet theory of solid state NMR

A periodic time-dependent Hamiltonian such as that for a
nuclear spin system in a polycrystalline sample undergo-
ing rotation at the magic-angle in a static magnetic field
is best described employing Floquet theory. Here we sum-
marize the well-developed theory from the perspective of
MAS NMR and its significance to quantum computing.
Most generally, the evolution of the density matrix, ρ(t),
of a spin system can be written as

ρ(t) = T̂ e−i
R t
0 dt′H(t′)ρ(0)ei

R t
0 dt′H(t′). (2.1)

It follows, therefore, that evaluating the evolution oper-
ator U(t) = T̂ e−i

R
t
0 dt′H(t′) is a central part of spectral

lineshape calculations. The straight-forward procedure is
to use the multi-step method which divides the time in-
terval, (0, tc), where tc is the period of the Hamiltonian,
into N equal steps and then one calculates each step by
approximating its Hamiltonian as being time-independent

U(t) = e−iH(tn)∆t...e−iH(ti)∆t...e−iH(0)∆t, (2.2)

where t = ntc/N . This usually involves the diagonaliza-
tion of each instantaneous Hamiltonian H(ti). Floquet
formalism [67–74], on the other hand, focuses the cal-
culation of the evolution operator on computing the
Floquet Hamiltonian HF by introducing Floquet states
|rn〉 where r is the state index of H and n is the mode
index [67,68]

〈pm|HF|qn〉 = hm−npq + nωcδpqδmn (2.3)

where hkpq are the Fourier components of the time-
dependent Hamiltonian

Hpq =
∑
k

hkpqe
ikωct. (2.4)

The evolution operator then can be calculated from the
following expression

Upq(t) =
∞∑

n=−∞

〈
pn|e−iHFt|q0

〉
einωct,

=
∑
r

∞∑
n,k=−∞

〈
pn
∣∣λ0
r

〉 〈
λ0
r

∣∣ qk〉 e−i(qr−nωc)t (2.5)
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where the index r runs over the Hilbert space defined
by H. For the sake of generality, the Hamiltonian is as-
sumed to be anisotropic, i.e. H ≡ H(α, β, γ, t) where
α, β and γ are the Euler angles describing the interac-
tion tensors relative to the laboratory frame (they can be
set to zero for solution NMR cases). |λnr 〉 and λnr are the
eigenstate and eigenvalues of the Floquet Hamiltonian,
respectively

HF|λnr 〉 = λnr |λnr 〉 (2.6)
qr = λnr − nωc. (2.7)

Equation (2.5) can be rewritten as [66–68]

U(t) = P (t)e−iQtP (0)−1 (2.8)

where Q is traceless and diagonal with diagonal ele-
ments qr, and P (t) the Floquet amplitude is defined as

Pnpq =
〈
pn|λ0

q

〉
· (2.9)

At first sight, the estimated magnitude of U(t) can be
made almost exact because the values of t can be chosen
in arbitrarily small increments. However, in most realistic
cases, the Floquet Hamiltonian HF cannot be solved ex-
actly: it requires the use of a perturbation expansion, or
equivalently, matrix diagonalization. As has been shown,
the order of the expansion series, or the chosen dimension
of HF presents a bound to the accuracy of U(t).

If we further define density matrices, observable op-
erators and evolution operators in the Floquet basis, a
formalized Floquet theory [77] can be formulated. Specif-
ically, we define

UF(t) =
∑
n,m

Un−m(t) |n 〉〈m| e−inωrt (2.10)

where Un(t) are given by

U(t, t0) =
∑
n

Un(t)e−inωrt0 . (2.11)

Then the density matrix can be found as

σ(t) =
∑
n,m

〈
n
∣∣σF(t)

∣∣m〉 e−i(n−m)ωrt

=
∑
n,m

〈
n
∣∣∣UFσF(0)UF−1

∣∣∣m〉 e−i(n−m)ωrt (2.12)

where σF satisfies the Liouville equation

dσF(t)
dt

= −i[HF, σF(t)] (2.13)

and the initial density matrix at time t = 0 is given by〈
n
∣∣σF
∣∣m〉 = δn,mσ(0). (2.14)

The observable operator is defined as

AF =
∑
n,m

An−m|n〉〈m| =
∑
n,m

Am|n〉〈n−m| (2.15)

where An are the Fourier components of A(t):

A(t) =
∑
n

Ane−inωrt. (2.16)

Note that definition of the Floquet Hamiltonian HF in the
original work [77] is different from equation (2.3). The for-
malized form of the detection observable D then is easily
found from the requirement

S(t) = Tr[Dσ(t)] = Tr
[
D̃FσF(t)

]
(2.17)

to be

D̃F =
∑
n,m

D|n〉〈m|e−i(n−m)ωrt

=
∑
n,m

D|n〉〈n+m|e−imωrt. (2.18)

Because of its unified and has a concise form, the for-
malized Floquet theory will be used throughout the work.

2.2 Floquet pseudo pure state

With the above formalized Floquet theory, the pseudo
pure state or effective pseudo pure state introduced by
Cory et al. [46] can be extended to Floquet space as
follows:

ΨF =
(1− α)̂I + α

∣∣φF 〉〈φF
∣∣

2nk
(|α| ≤ 1) (2.19)

where n is the number of spin-1/2 nuclei, k is the (effec-
tive) dimension of the “mode” space and Î is the identity
spinor whose matrix form is an nk × nk identity square
matrix. It is easy to verify that the above definition of
the pseudo pure state satisfies the three criteria given by
Cory et al. [46]: i.e., ΨF defines a pure density matrix
and vice versa; ΨF evolves according to the same unitary
transform governing the evolution of a pure density ma-
trix and the measurement value of an observable operator
over ΨF and that of the same observable operator over a
pure density matrix differ in a trivial constant only. There-
fore, the pseudo pure state in Floquet space can be used
to “emulate” quantum computing.

To specify the Floquet space, in the following sections
we will focus on the chemical shift interaction. The Euler
angles system is defined as follows: the principal axis di-
rection of the chemical shift tensor in the rotor systems is
determined with (α, β, γ) while the rotor system is speci-
fied by (ωrt, θ, 0) relative to the laboratory frame, where ωr

is the sample spinning speed. The most interesting case in
solid state NMR as well in this work is when the sam-
ple spins at the “magic angle”, i.e. the spinning axis is
tilted β = βm = 54.74◦ with respect to the static mag-
netic field, which is called magic-angle-spinning(MAS).
The chemical shift interaction Hamiltonian then can be
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written as [63,64]

HCS = −Iz
{
δ0 + δP2(cosθ)

[
P2(cosβ)− η

2
sin2βcos2γ

]
+
√

3
2
δξ(t)

}
(2.20)

where δ0 is the isotropic chemical shift plus the RF offset,
δ, η are the anisotropy and asymmetry parameters of the
chemical shift tensor, respectively. Denote the three prin-
cipal values of the chemical shift tensor as σ11, σ22, σ33

and assume the convention σ11 ≥ σ22 ≥ σ33, then there
are relations δ0 = 1

3 (σ11 + σ22 + σ33), δ = σ0 − σ33, η =
(σ11−σ22)/δ. It is noteworthy that at the magic angle, all
the anisotropic terms in equation (2.20) disappear, mean-
ing registered spectra are free from line broadening caused
by chemical shift interactions. This is the most important
principle in high resolution solid state NMR. The time-
dependent term ξ(t) in equation (2.20) is given by

ξ(t)=C1cos(ωrt)+S1sin(ωrt)+C2cos(2ωrt)+S2sin(2ωrt)
(2.21)

where

C1 =
1
2

sin2θsinβ[−cosβ(ηcos2γ + 3)cosα+ ηsin2γsinα]

S1 =
1
2

sin2θsinβ[cosβ(ηcos2γ + 3)sinα+ ηsin2γcosα]

C2 =
1
2

sin2θ

{[
3
2

sin2β − η

2
cos2γ(1 + cos2β)

]
cos2α

+ηcosβsin2γsin2α
}

S2 =
1
2

sin2θ

{[
−3

2
sin2β − η

2
cos2γ(1 + cos2β)

]
sin2α

+ηcosβsin2γcos2α
}
· (2.22)

From equations (2.20, 2.21), the Floquet HamiltonianHF
CS

can readily be found from equations (2.3, 2.4) [71].

〈
0n
∣∣HF

CS

∣∣ 0n〉 = nωr −
1
2
δω〈

1n
∣∣HF

CS

∣∣ 1n〉 = nωr +
1
2
δω〈

0n
∣∣HF

CS

∣∣ 0n± 1
〉

= −
√

3
4
δCSC1〈

1n
∣∣HF

CS

∣∣ 1n± 1
〉

=
√

3
4
δCSC1〈

0n
∣∣HF

CS

∣∣ 0n± 2
〉

= −
√

3
4
δCSC2〈

1n
∣∣HF

CS

∣∣ 1n± 2
〉

=
√

3
4
δCSC2. (2.23)

All the other elements are zero. The chemical shift inter-
action is a typical “inhomogeneous” interaction, i.e., it’s

Hamiltonian at different times is always commutable ren-
dering it unnecessary to perform the time ordering oper-
ation in the calculation of the unitary evolution operator.
This is a very important property that helps one analyse
the evolution of (pseudo pure) quantum states and sim-
plify the design of quantum computing gates. Other im-
portant inhomogeneous interactions include the electric
quadrupolar interaction and heteronuclear dipolar cou-
pling which will be discussed in future work.

From above paragraphs, some important implications
of the applications of Floquet space and solid state NMR
to quantum computing in Floquet formalism are summa-
rized as follows: First, Floquet space is dimensionally ad-
justable, i.e., changing the sample spinning speed ωr can
augment or reduce the effective dimension of the space
meaningful for quantum computing. Moreover, contrary
to a usual quantum mechanical system, its dimension is
not necessarily a power of 2. Second, in solid state NMR
quantum computing, the Hamiltonian hence the “opera-
tion” can be controlled both with the RF field and sample
spinning speed, which provides more flexibility than solu-
tion NMR quantum computing. Third, opposite to solu-
tion NMR quantum computing which is not satisfactory
at low temperatures (below the melting point of the sam-
ple used), solid state NMR is usually more sensitive at
temperatures as low as possible.

3 Spectral representation of Floquet state

3.1 Signal readout

One of the most essential functions of computing is that
the output can be read out. In this section, we give an op-
erational procedure on how to “read out” a pseudo pure
state of a solid state NMR quantum computer. In line
with standard NMR spectroscopy which measures the in-
duction voltage caused by the transverse magnetization
vector of the spin ensemble, this is done by observing the
spin ensemble (which is in a pseudo pure state). There are
numerous “read” pulses available, but for simplicity and
without losing generality, we use single 90◦ pulse in this
work (This is sufficient for chemical shift interaction but
for quadrupolar interaction an effective observation may
demand more complicated pulses, which will be discussed
in the future).

The energy levels of a spin-1/2 system in spinning solid
NMR are labeled as shown in Figure 1A. The first index is
spin angular momentum quantum number and the second
one the mode. The readout function of an output state
is given in Figure 1B. Therefore, the FID (free induction
decay) signal of a pseudo pure state |pm〉 can be given as

Spm+ (t) = Tr
[
ĨF
+U

F
CSU

F
90σ

FpmUF
90

−1
UF

CS

−1
]

(3.1)

where UF
CS and UF

90 are the Floquet evolution operators
corresponding to chemical shift interaction and the 90◦
pulse, respectively. σFpm ≡ |pm〉〈pm| is a pure state in
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Fig. 1. (A) The Floquet energy levels of spin-1/2 under MAS.
(B) The read pulse (90◦) for a Floquet state.

Floquet space. ĨF
+ is the observable operator defined by

ĨF
α =

∑
m,n

|n〉Iα〈n+m|eimωrt α = x, y,±, etc. (3.2)

3.2 The expressions for UF
90 and UF

CS

We assume the 90◦ pulse is along the -x direction in the
rotating frame, the RF Hamiltonian is written as

Hrf = ω1Ix ≡
ω1

2
σx (3.3)

where ω1 is the RF field strength and σx is the Pauli
matrix. Above equation leads to the following Floquet
Hamiltonian

HF
rf = ω1

∑
n

|n〉Ix〈n|+ nωr1|n〉〈n|

= ω1
1
2
σx
⊕ 1

2
σx
⊕

...
1
2
σx + nωr1|n〉〈n|. (3.4)

The general expression for the evolution operator of the
RF interaction is then given by

UF
rf(tp) = e−iHF

rf tp = e−i[ω1
P
n |n〉Ix〈n|+nωr1|n〉〈n|]tp (3.5)

where tp is the pulse width. In explicit matrix form, equa-
tion (3.5) is

UF
rf(tp) =



.
.
.
UIxe−iωrtp

UIx
UIxeiωrtp

.
.
.


· (3.6)

If the effective dimension of the mode space is K and
the condition Kωrtp → 0 is satisfied, above equation is
reduced to

UF
rf(tp) =



.
.
.
UIx

UIx
UIx

.
.
.


(3.7)

which is a useful simplified expression. The explicit ex-
pression of the evolution operator of chemical shift interac-
tion Hamiltonian can be found from equations (2.20–2.22).
Specifically, for a spin-1/2 system, from the Hamiltonian
equation (2.20), we have

UCS(t, t0) = e−i
R
t
t0

dt(ωCS+δ0)Iz

=
∑
n

Ane−i(δ0+nωr)(t−t0)Iz

=
∑
n

An

(
e−i[nωr

2 (t+t0)+
δ0t
2 ] 0

0 ei[nωr
2 (t−3t0)+

δ0t
2 ]

)
einωrt0 .

(3.8)

Where the expansion coefficients An can be found to be
An = |Fn|2 with [64]

Fn=
1

2π

∫ 2π

0

dφ ei[−nφ+
C1
ωr

sinφ−S1
ωr

cosφ+
C2
2ωr

sin2φ− S2
2ωr

cos2φ].

(3.9)

Comparing equation (3.8) with equation (2.11), we have

UCSn(t) = An

(
e−i[nωr

2 (t+t0)+
δ0t
2 ] 0

0 ei[nωr
2 (t−3t0)+

δ0t
2 ]

)
(3.10)

which, when t0 = 0 is chosen, is reduced to

UCSn(t) = An

(
e−i

δ0+nωr
2 t 0

0 ei
δ0+nωr

2 t

)
(3.11)

which can, in terms of its matrix elements, be denoted in
a more concise form as follows

UppCSn(t) = Ane−i
εp(δ0+nωr)t

2 p = 0, 1 (3.12)

where p = 0(1) corresponds to spin state |0〉 = | + 1
2 〉(

|1〉 = | − 1
2 〉
)

and εp = p − δp,0 with δp,0 the Kronecker
function.

3.3 The effects of UF
90 and UF

CS on pseudo pure state

Suppose we have prepared a pseudo pure state |pm〉 by
state labeling techniques [45,46,52] (detailed in Sect. 4
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for solid state NMR quantum computing). The effect of
the 90◦ RF pulse on the state is

|pm〉 →
∑
n,l

e−inωrtp |n〉U90x
n−l〈l|pm〉

=
∑
n

e−inωrtp |n〉U90x
n−m|p〉· (3.13)

Because the only non-zero component of U90x
n is U90x

0 and

notice that |0〉 90◦x−→ (|0〉+i|1〉)/
√

2, |1〉 90◦x−→ (|1〉+i|0〉)/
√

2,
the above equation is simply

|pm〉 90◦x−→ 1√
2
|m〉(|p〉+ i|p− εp〉). (3.14)

The effect of the chemical shift interaction on a pseudo
pure state can be found as follows

|pn〉 H
F
CS−→ UF

CS|pn〉 =
∑
k,l

e−ikωrtUCSk−l|k〉〈l|pn〉

=
∑
k

e−ikωrtUCSk−n|pk〉· (3.15)

The combined effects of the RF pulse and the chemical
shift interaction are therefore given as

UF
CSU

F
90x|pm〉 =

1√
2

∑
k

e−ikωrtUCSk−m(|pk〉+ i|p− εpk〉).

(3.16)

Equations (3.14–3.16) are the basic equations important
to the calculations in the following sections.

3.4 The spectral representation of the readout signal

The signal equation (3.1) can be decomposed into two
terms Spm+ (t) = Spmx (t) + iSpmy (t) where Spmx (t), Spmy (t)
are obtained from equation (3.1) by replacing Ĩ+ with Ĩx
and Ĩy , respectively. We will give the results here (the
derivation of Spmy (t) is shown in Appendix A and it equally
applies to the calculation of Spmx (t)).

Spmy (t) = i
1
2

∑
k

Ak−mεp
[
e−iεp(k−m)ωrt − eiεp(k−m)ωrt

]
(3.17)

whose spectrum is obtained by Fourier transformation

Ipmy (ω) = i
1
2

∑
k

Ak−mεp[δ(ω − εp(k −m)ωr)

− δ(ω + εp(k −m)ωr). (3.18)

For a given system, the largest mode number is fixed, say,
K, which is restricted by the sensitivity limit. Then the
above equation means that the sideband manifold consists
of the following bands: [−K−m,−K−m+1, ...,K−m]εp

Fig. 2. Upper: the sub-manifold of six energy levels of a spin-
1/2 system under MAS and lower: the representation of each
state.

and [−K + m,−K + m + 1, ...,K + m]εp. The ampli-
tude of each band depends on the value of p: for differ-
ent p, there is a 180◦ phase factor difference. Therefore, a
unique one-to-one correspondence is established between
a pseudo pure state and a spectral representation. The
signal Spmy (t) (or Ipmy (ω)) contains two groups of bands
with opposite signs in intensity. If quadrature detection is
used, the signal is found to be

Spm+ (t) =
∑
k

Ak−mεpe−iεp(k−m)ωrt (3.19)

and its spectrum is readily found to be

Ipmy (ω) =
∑
k

Ak−mεpδ(ω − εp(k −m)ωr) (3.20)

which contains only one group of sidebands given by in-
dices [−K + m,−K + m + 1, ...,K + m]εp. As a demon-
stration, we choose the six-level system shown in Figure 2
in which |K| = 1. Then the spectral representations of all
the pseudo pure states are given in Figure 3 and Figure 4
for single crystal and powder samples, respectively. The
one-to-one correspondence between state and spectrum is
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Fig. 3. The readouts of the Floquet system shown in Figure 2
for a single crystal sample. The parameters are δCS = 20 kHz,
ηCS = 0.5, the spinning speed ωr = 4 kHz. The relative ori-
entation of the crystal with respect to the magnetic field is
described by two Euler angles (between the lab frame and the
principal axis system of the CSA tensor) (α, β) = (30◦, 60◦).

Fig. 4. The readouts of the Floquet system shown in Figure 2
for real polycrystalline powder sample. The parameters: δCS =
20 kHz, ηCS = 0.5 and spinning speed ωr = 4 kHz.

obvious. The pseudo states are differentiated by amplitude
distribution or by a phase factor or both. The spectra are
absorptive for powder sample but for single crystal, they
may be dispersive but in the later case, the relative phase
differences can still be used to unambiguously identify the
particular pseudo pure state of the solid state NMR quan-
tum computer before the readout RF pulse was applied.

4 State labeling

4.1 General

State labeling is the unique feature of ensemble quantum
computing because a pure state is not naturally available
in an ensemble. To carry out quantum computation, one
must first “purify” the ensemble so that it can be regarded
as being in a pure state. The problem of state labeling
in solution NMR has been well addressed. There are two
types of labeling: one is temporal and another spatial.
The former uses proper time averaging and the latter uses
spatial averaging, of the density matrices, to construct a
pseudo pure state. Here we show how these methods can
be extended to Floquet space quantum computing.

Given an initial density matrix, ρF(t0), state labeling
renders it a pseudo pure state and a quantum computation
task can be undertaken starting from it as follows

PFUFρF(t0)UF−1
= C

∣∣φF
0

〉〈
φF

0

∣∣ = cψF (4.1)

where C is the computation operator and c is a constant
coefficient and PF a certain preparation (not unitary in
most cases).

State labeling from the initial (thermal state) density
matrix given by 〈n|σF(0)|m〉 = σ(0)δ0,mδ0,n is a trivial
task because there are only two non-zero terms for spin-
1/2 systems. Either with phase cycling (two experiments)
or by applying a gradient field, a specified state can be
chosen using the routine techniques. However, this is not
the general case because, first, the initial density matrix
in formalized Floquet theory can be chosen as a different
form 〈n|σF(0)|m〉 = σ(0)δm,n and secondly, state labeling
may need to start with a density matrix other than the
thermal equilibrium form. In addition, certain computa-
tions may require a pure state with the mode indices not
equal to zero. Therefore, in the following two general tech-
niques will be given which can be employed for any type
of mixed state.

4.2 Multi-pulse techniques

From Section 3, a pure state corresponds to certain peak
profile in an MAS spectrum. The preparation of a pseudo
pure state, therefore, is equivalent to constructing a sub-
spectrum with specific peak profile. Over the past decades,
there have been developed an array of techniques in solid
state NMR to manipulate the MAS spectral peaks, such
as TOSS (total suppression of sidebands), PASS (phase
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Fig. 5. The pulse sequence of a 2D PASS experiment for spin-
1/2 systems proposed by Atzutkin et al. [79] [ASL].

adjusted spinning sidebands), IRS (isotropic rotation se-
quence) and their combinations and two-dimensional ex-
tensions etc. [78]. As an example, we demonstrate that the
2D-PASS sequence is a satisfactory technique for state la-
beling. The sequence consists of five π pulses and is shown
in Figure 5. The parameter Θ (pitch) is used to character-
ize the separations between each adjacent pair of π pulses.
In 2D-PASS experiment [79], Θ also represents the first
dimension and it is changed systematically according to
prescribed separations between pulse pairs such as

2
n∑
q=1

(−1)qeimθq + 1− (−1)neim(Θ+θT ) = 0

−2
n∑
q=1

(−1)n+qθq + θT = 0

θT = 0 (4.2)

where n is the total number of the sidebands in the MAS
spectrum. The meaning of other parameters is shown in
Figure 5. Each sideband (or central band) can be extracted
from the projection along the first dimension. When neces-
sary, the intensity of each band can be modified by adding
a pair of pulse 90◦−xθx at the end of the PASS sequence,
where the value of θ is determined by the desired inten-
sity of the band. The peak profile of a pseudo pure state
can then be constructed by adjusting Θ and θx systemati-
cally. For example, given a peak profile AK ,K = 1, 2, ..., n
where AK is the intensity of Kth sidebands. The
second dimension signal (FID) in a 2D-PASS experiment
is given by

S(t2) =
∞∑

k=−∞
a(k)e−ikΘei(δ0+kωr)t2 (4.3)

where the explicit expression of a(k) can be found in ref-
erence [77]. The simplest peak “basis” can be chosen as∑

Θ

SΘ(t2)xΘK = AKei(δ0+Kωr)t2 (4.4)

where xK (= sin θx) are to be determined. By sum-
ming all possible values of Θ the above equation can be
simplified as ∑

Θ

a(k)eikΘxΘK = δkKAk. (4.5)

Therefore, the values of xK can be found out by solving
the above linear equations

x = A−1∆ (4.6)

where the matrices A = a(k)eikΘ and ∆ = δkKAK . It can
be easily verified that A−1 exists.

Therefore, any subspectral profile can be constructed
with this sequence: 90◦x− [ASL]− 90◦x− θ−x. The number
of the values of Θ is determined by the number of the side-
bands in the MAS spectrum and in principle there are no
restrictions on the values of Θ. Therefore, this technique
can readily deal with a system with as many as hundreds
or even thousands of sidebands.

To reduce the number of steps to a practically accept-
able level, the density matrix may be simplified before
the standard state labeling techniques is invoked. We be-
lieve that the selective excitation techniques such as Dante
pulse sequence [80], can be incorporated in the prepara-
tion of the density matrix for state labeling.

4.3 Gradient field selection

Temporal labeling methods as discussed above are easy
to implement and retain the sensitivity of the whole sam-
ple, but usually require a number of experiments. This
reduces computing efficiency and in the least-promising
cases might conceal the advantage of quantum paral-
lelism [45,48]. Therefore, temporal labeling is best suit-
able for low-qubit implementations. Another technique,
i.e., spatial labeling was proposed by Cory et al. [46,52]
which may or may not use phase cycling. Here this method
is extended to the solid state MAS NMR case.

In a magnetic gradient field, the Floquet energy levels
are dispersed along the direction of gradient. The effect of
a gradient field on the energy levels is the same as in nor-
mal Hilbert space. Without losing generality, we consider
the case where the gradient field is along the z-direction
(parallel with the static magnetic field). We use the “sand-
wich” pulse sequence Gz1(tG1) − 90◦x − Gz2(tG2) where
tG1, tG2 are the gradient pulse lengths and 90◦ is the RF
pulse, as shown in Figure 6. The evolution operator during



Shangwu Ding et al.: Quantum computation based on magic-angle-spinning solid state NMR 31

Fig. 6. The typical pulse arrangement for state labeling with
gradient field selection.

the gradient pulse can be from equation (2.11)

UG(t, t0) = e−izGz
R
t
t0

dt(ωCS(t)+δ0)Iz

=
∑
n

An

 e−izGz[nωr
2 (t+t0)+

δ0t
2 ] 0

0 eizGz[nωr
2 (t−3t0)+

δ0t
2 ]


× einωrt0 =

∑
n

UG n(t)einωrt0 (4.7)

from which the evolution operator in Floquet space can
be easily found using equation (2.10).

With any given initial state ρF(t0), the final density
matrix after the sandwich pulse sequence is given by

ρF(t) = UF
G2(t2, t

′

0)UF
90xU

F
G1(tG1, t0)ρF(t0)UF

G1

−1

× (tG1, t0)UF
90x

−1
UF
G2

−1
(t2, t

′

0) (4.8)

where t2 = tG2 + t
′

0, t
′

0 = t0 + tG1 + tp. It is easy to show
that above equation only provides a constraint on the the
Floquet space if the gradient field is time independent.
Using equation (2.10), we can find the condition for state
labeling from equation (4.8) as

εpkωrGz2tG2 + εqlωrGz1tG1 = 0 (4.9)

where k, l are integers. The detailed derivation of above
equations is given in Appendix B. By setting Gz1, Gz2, tG1

and tG2 properly, the desired situation that only one term
survives the pulse sequence can be realized, thus a pseudo
pure state is prepared.

Obviously, the gradient field method can also be incor-
porated with selective excitation but its merit is unknown.
In the following, we will focus on the techniques that do
not need a gradient. The thorough investigation of the ap-
plication of a gradient field in solid state NMR quantum
computing will be presented elsewhere.

5 Universality and gate design

The above procedures for implementing state labeling can
be extended to construct basic operating matrices, i.e.,
elementary quantum logic gates. The universality can be

ensured if all possible operations can be realized with a
set of elementary gates. The central problem is how to
realize the operations that transform any state into any
other state. As an example, we show that the 2D-PASS
sequence can be used as a basic pulse block in constructing
universal logic gates. From “peak manipulation” point of
view, if all peak profiles can be realized starting from any
peak profile, the gates thus constructed are universal.

Here we give a general discussion on the relationship
between peak manipulation and the construction of com-
plete unitary transform (universal gates). Starting from
the initial density matrix ρF(0), two pseudo pure states
can be prepared as follows

ρF
1 = PF

1 ρ
F(0)

ρF
2 = PF

2 ρ
F(0). (5.1)

Thus the unitary transform that maps state ρF
1 to state

ρF
2 can be realized with

UF
12 = PF

2 P
F
1

−1
. (5.2)

Suppose there are L Floquet states that are usable for
quantum computing where L = Ld +Lu where Ld, Lu are
the number of states corresponding to spin quantum num-
ber 1

2 ,−
1
2 , respectively. Its is easy to find from the energy

levels that the total number of peaks from this energy
level manifold is L− 1. Therefore, for a unitary matrix of
M ×M dimension, M + 1 Floquet states are needed. The
unitary matrices can then be determined from the peak
manipulation matrices which constitute a complete set:

UF
mn =

∑
i,j

amnij Pmnij . (5.3)

The unitary matrices thus constructed necessarily form
a complete set because peak manipulation matrices are
complete.

The experimental realization of the universal opera-
tion can be implemented with, e.g., 2D-PASS sequence
[ASL] shown in Figure 5. For example, pulse sequence
θ

(n)
x − 90◦−x− [ASL]−1− 90◦−x− 90◦x− [ASL]− 90◦x− θ

(m)
−x ,

where [ASL]−1 is the time-inverted version of the ASL
sequence shown in Figure 5, gives the pulse sequence
that transforms a pseudo pure state |pm〉〈pm| to another
|qn〉〈qn|. With these transform matrices, therefore, any
possible operations compatible with the system are real-
izable.

This method, perhaps rather forceful, is workable in
practice, at least for low qubit cases. However, we point
out that there may exist more efficient pulse sequences
that can realize above transformations and that is to be
the major goal of our subsequent efforts.

6 Example: Grover’s search

In this section, we demonstrate the use of the theoretical
formalism developed in the preceding sections to imple-
ment experimentally a quantum algorithm. We will use
Grover’s search [81] as an example.
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Grover’s search consists of four steps [81]: (1) the
preparation of pseudo pure state; (2) HW transform; (3)
conditional flipping; (4) average about the mean; where
step (3) and (4) are repeated 2

√
N/π times for an N -item

search. When using the 2D-PASS sequence, steps (1–3)
can be incorporated in one experimental step with the
initial density matrix as the input and an equi-amplitude
superposed state as the output. In the output state, the
phase difference between the flipped bit and the rest is
180◦. The step (4) corresponds to the transform matrix
with elements Uij = 1

2 − δij , each of which can be imple-
mented according to equation (5.3). Generally, the corre-
sponding pulse sequence can then be designed as follows:
90◦x− [ASL]− 90◦x− θ

(l)
−x− θ

(m)
x − 90◦−x− [ASL]−1− 90◦x−

[ASL]−90◦x−θ
(n)
−x−Acquisition with l, m, n = 1, 2, 3, 4...

This means the number of experiments is l×m×n which
would soon become impractically large. However, above
construction of the pulse sequence may reduce the number
of experiments substantially. For example, for the 2-qubit
search experiment demonstrated in this work, however,
only four experiments are required for each search. The
Floquet energy level diagram and four “working” states
are illustrated in Figures 7A and B, respectively.

The experiments were performed on a Bruker MSL-
200 NMR spectrometer. The 13C resonance frequency was
50.3 MHz. The sample was hexamethylbenzene (HMB)
which was spun at the magic-angle with a spinning speed
of 5 kHz. The aromatic carbon atom which has a chemical
shift anisotropy of about 100 ppm is the spin we used
for quantum computing. The methyl carbon has a small
chemical shift anisotropy and its peak is used as the phase
standard of the spectra. With the spinning speed used,
there are two sidebands that are clearly observable for
the aromatic carbon. Based on pulse sequences and the
procedures discussed in the previous section, four search
results were obtained and are shown in Figure 8. As seen
from Figure 7B and Figure 8, the theoretical prediction is
in good agreement with the experimental result.

7 Conclusions

In this work, magic-angle spinning solid state NMR QC
theory is developed based on formalized Floquet theory.
Because the mode space is controlled by the sample spin-
ning speed, the realizable number of qubits is changeable
and can be made as large as the task demands (the ul-
timate limitation comes from signal to noise ratio). The
techniques required for state manipulations (labeling, co-
herence selection etc.) are analyzed. The spectral represen-
tations of state is given that is crucial to readout of QC
registers. The basic QC gates are demonstrated and an
important QC algorithm is shown to be realizable in solid
state quantum computer. Based on these theoretical anal-
yses, it has become clear that solid state NMR may be-
come a good alternative methodology for ensemble quan-
tum computing. This technique has many advantages:
such as large working space (Floquet) that is adjustable.
This makes a vast difference between this technique

Fig. 7. Grover search based on MAS NMR. (A) Energy
level diagram showing the states used for the experiment.
(B) Schematic representation of the four Floquet states chosen
for the experiment.

Fig. 8. The experimental result of four possible states with
Grover search algorithm based on MAS NMR, represented with
the sideband pattern of the aromatic carbons of hexamethyl-
benzene. The rightmost peak comes from the methyl carbons
and is used as phasing reference.
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and previously proposed NMR-related methods because
the dimension of the computing space can be augmented
significantly for the spin systems which otherwise can only
offer very low number of qubits. The sensitivity is gener-
ally higher than its liquid state counterpart of the same
size because of the difference in the number densities of
nuclear spins. The pulse sequences are conveniently im-
plemented with conventional solid state NMR techniques
although non-conventional techniques may be used to en-
hance sensitivity and achieve higher-qubit operations. We
point out that the number of qubits currently manage-
able in our initial experiment is rather limited mainly be-
cause of the brute force pulse sequences used. We believe,
however, more efficient pulse sequences for implementing
higher-qubit QC operations in Floquet space can be found.

The chemical shift interaction of single spin-1/2 sys-
tem is exemplified in this work, but the principles and
procedures used here can be extended to other interac-
tions such as dipolar and quadrupolar interactions, which
is the object of further work. In fact, when more spins are
involved in coupled systems or large quadrupolar inter-
action is present, high qubits are more conveniently real-
ized in those systems. Nevertheless, we recognize that the
difficulty involved in manipulating experimentally these
systems may be significantly greater.

Finally, for a practical quantum computer, error cor-
rection is necessary. The recently published error correc-
tion schemes must be modified to accommodate solid state
NMR based quantum computing in Floquet space.

This work was supported by the Hundred Talents Program of
the Chinese Academy of Sciences and the Natural Science and
Engineering Research Council of Canada. SD acknowledges the
stimulating discussions with Prof. Guo Wei Wei of the National
University of Singapore. He also thanks Dr. Ole N. Antzutkin
of the Laboratory of Chemical Physics of the National Institute
of Diabetes and Digestive and Kidney Diseases, NIH (USA) for
sending a reprint of his review paper [78] on sideband manip-
ulation techniques that are important in experimental imple-
mentation of solid state NMR quantum computing.

Appendix A: Derivation of equation (3.17)
and equation (3.18)

From equations (3.1, 3.16), the signal Spmy (t) can be
written as

Spmy (t) =
1
2

Tr
{∑
k,k′

e−ikωrtUCSk−m(|pk〉+ |p− εpk〉)

× eik′ωrt(〈pk′|+ |p− 〈εpk′|)U−1
CSk′−m

∑
l,j

|l〉Iy〈l+ j|eijωrt

}
=

1
2

Tr
{ ∑
k,k′,j,l

e−i(k−k′−j)ωrtUCSk−m

×(|pk〉+ |p−εpk〉)(〈pk′|+〈p−εpk′|)U−1
CSk′−m|l〉Iy〈l+j|

}
·

(1)

In terms of matrix elements, it becomes

Spmy (t) =
1
2

∑
k,k′j,l

∑
s,n

e−i(k−k′−j)ωrt

×
(
UspCSk−m + U

sp−εp
CSk−m

)
〈n|k〉

×
∑
q,n′

(
UpqCSk′−m

−1 + U
p−εp q
CSk′−m

−1
)

×〈n′|k′〉〈n′|l〉〈q|Iy |s〉〈l + j|n〉

=
1
2

∑
k,k′

∑
s,q

[
UspCSk−m + U

sp−εp
CSk−m

]
×
[
UpqCSk′−m

−1 + U
p−εpq
CSk′−m

−1
]
Iqsy

=
1
2

∑
k,k′

∑
s,q

[
UspCSk−mU

pq
CSk′−m

−1

+UspCSk−mU
p−εpq
CSk′−m

−1
+ U

sp−εp
CSk−mU

pq
CSk′−m

−1

+Usp−εpCSk−mU
p−εpq
CSk′−m

−1
]
. (2)

Note that UCSn is diagonal and Iy is Hermitian and its
diagonal elements are all zero. The above equation only
has two non-zero terms given as

Spmy (t) =
1
2

∑
k,k′

[
UppCSk−mU

p−εp p−εp
CSk′−m

−1
Ip−εp py

+Up−εp p−εpCSk′−m UppCSk−m
−1
Ip p−εpy

]
. (3)

Using the matrix expression of the UCSn(t) equation (3.12)
and the orthogonal properties of Bessel functions con-
tained in coefficients An, the time-domain signal equa-
tion (3.17) is readily obtained. The calculation of Spmx (t)
is completely the same as given above and its result is

Spmx (t) =
1
2

∑
k

Ak−mεp
[
e−iεp(k−m)ωrt + eiεp(k−m)ωrt

]
.

(4)

The quadrature detection signal (Eq. (3.19)) is the sum of
above equation and equation (3.17).

Appendix B: Derivation of equation (4.9)

The effect of a gradient magnetic field is used to select
certain orders of coherences from the initial density matrix
by spatially averaging out others. An arbitrary element of
ρF

0 is denoted as |pi〉〈qj| with coherence order of p − q
and i− j in Hilbert and mode space, respectively. To see
how gradient field select density matrix elements, we first
calculate the following term (see Eq. (4.8))

UF
Gz2

(t2, t
′

0)UF
90◦xU

F
Gz1

(tG1, t0)|pi〉|qj| (5)
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which can be written as according to equations (2.10, 3.5)∑
n,m,l,k

UG2n−mU
F
90◦x

×UG1l−k|n〉〈m|l〉〈k|pi|〈qj|ei(n−m)ωrt

=
∑
n,m

UG2n−mU
F
90◦x

×UG1m−i|pm〉〈qj|ei(n−m)ωrt

=
∑
n,m

UG2n−mE
−i[ω1σn′ |n′〉Ix〈n′|+n′ωr1|n′〉〈n′|]tp

×UG1m−i|pm〉〈qj|ei(n−m)ωrt

=
∑
n,n′,m

UG2xUIx |n′〉〈n′|ein′ωrtp

×UG1m−i|pm〉〈qj|ei(n−m)ωrt

=
∑
n,m

UG2n−mUIxUG1m−i|pm〉〈qj|eiωr(mtp+(n−m)t (6)

where tp is the 90 degree pulse width and t = t2 − t0.
Assuming ρF(t0) = |pm〉〈qj|, equation (4.8) is then writ-
ten as∑
n,m,n′m′

UG2n−mUIx

× UG1m−i|pm〉〈qm′|U−1
G1m′−jU

−1
Ix
U−1
G2n′−m′

× eiωr[(m−m′)tp+(n−n′+m′−m)t]. (7)

Let t0 = 0. Using equation (4.7), the terms related to the
gradient field in above equation are of the form

e±in−m2 G1zzωrt, e±im−i2 G1zzωrt

e±in
′−m′

2 G2zzωrt, e±im
′−j
2 G1zzωrt. (8)

Note that the gradient fields are symmetrical with respect
to z axis and the indices n,m, n′,m′ run from −∞ to ∞.
Therefore, above equation would vanish unless

(i− j)G1tG1 = (n− n′)G2tG2 . (9)

If we denote the coherence orders in the mode space during
the first and second gradient field pulses, i− j and n−n′,
as l and k, respectively, above condition is the same as
equation (4.9) by adding the coherence transfer condition
in Hilbert space.
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